LP 36 Lewis/Loftus/Cocking: Appendix C Lesson Plans

Lewis/Loftus/Cocking: Appendix C Lesson Plans LP 35

Appendix C: Additional Content & Activities on:

· Computer Categories
· Using Computers Responsibly
· Virtual Machines
· Debugging
· Conditions and Assertions
· Inserting and Deleting Array Elements
· Invariants
· Linked Lists (singly, doubly, and circular)
· Inserting, Deleting, and Traversing Maps and Sets

Computer Categories

The following section could be referenced above the section entitled "Digital Computers" on page 4 of the student text.

There are also many ways to categorize various types of computer systems. For now, we will just classify them according to their purpose and number of users.

A single-user system, often referred to as a personal computer or microcomputer, is intended (as the name implies) for use by a single user. The security requirements on a single-user system are often more flexible than a multi-user system, which is specifically designed to handle multiple users, often at the same time.

A multi-user system, which might also be classified as a minicomputer or a mainframe, requires the means for multiple users to interact with a system at one time. Therefore, each user usually needs his or her own keyboard and monitor. In the past, the use of dumb terminals was common, which had no computing power of their own. These days, connections to multi-user systems are often accomplished through a personal computer, which could be used on its own or as a conduit to connect to a multi-user system.

The issues discussed in this book regarding software development generally apply equally well to both single- and multi-user systems.

Using Computers Responsibly

The following section could be referenced above the section entitled "Programming" on page 24 of the student text.

Obviously, the use of computers in modern society is critically important. Unfortunately, the misuse of computing technology has grown in proportion to our reliance on it. As users, and as programmers, we should embrace strong ethical principles regarding computers.

One ethical issue is privacy. Given our reliance on networking and the Web, we often provide important personal data through online forms. Software systems that manage that information should do so in a way that ensures a reasonable amount of security, which often means that the data should be encrypted before being transported over a network. Businesses that use that data should do so based on a clearly stated privacy policy.

Another important ethical discussion regarding computer use today pertains to the ownership of intellectual property. The ease with which digital media such as music files can be reproduced and shared using networks has created a problem for the artists that create such property and the companies that support them. Computer programs that facilitate the distribution of such media have come under harsh criticism. This is an ongoing debate and its ultimate resolution is unclear at the moment.

As programmers, the systems we create should be reliable. That is, they should function as intended without significant failure. What constitutes a significant failure varies based on the role the software system plays. Some systems, such as medical equipment software or airplane navigation software, are life-critical, meaning that failure in their processing could cause loss of human life. A lack of reliability in other systems could result in huge amounts of money being lost. A system, for example, that controls a multi-million dollar satellite, should be highly reliable. The reliability of life-critical and high cost-of-failure systems is paramount.

Some programmers deliberately create programs that cause damage or loss of data to computer systems. Such programs are called viruses, and there are many variations of the forms these programs can take. Viruses are often created to simply demonstrate that it can be done, which is usually viewed as a classic example of the abuse of computing technology.

As you continue the exploration of the topics discussed in this book, the underlying ethical and social ramifications of the use of technology should remain a high priority.

Virtual Machines
The following paragraph could be referenced above the paragraph that begins "Since the compilation process…" on page 38 of the student text.
Because Java is architecture neutral, we say that Java runs on a virtual machine. The interpreter that executes the Java bytecode represents an arbitrary computer, independent of the actual hardware that exists underneath.

Debugging

The following section could be referenced above the section entitled "Language Evolution" on page 41 of the student text.

As programs become larger and more complicated, the process of debugging can become difficult. There are a variety of effective approaches to debugging:

· desk checking code

· adding output statements

· using a symbolic debugger

One of the most effective techniques is desk checking the source code, which is also called hand tracing the code. Desk checking is the process of carefully looking over the source code of the program, mentally following the processing of the program, in an attempt to find problems. Although this sounds simplistic, it is often very effective.

Another approach is the process of adding extra output statements to the program to follow the execution of the program. By adding extra println statements, for instance, at various points in the program, you will be able to see the order in which statements are being executed and be able to examine the data that is being used by the program. Such information often lets you narrow in on a particular problem.

A third approach to debugging is to use a symbolic debugger, which is a software tool that lets you execute a program in a controlled way. A debugger lets you set stop points, at which the program execution will pause to allow you (through the debugger) to examine the values of data.

Note that all three of these approaches are accomplishing the same thing in different ways. They all allow you to follow the execution of a program and determine what, precisely, it is doing. That process allows you to discover where the program code differs from what you intended the program to do.

Conditions and Assertions

The following section could be referenced above the section entitled "Method Overloading" on page 210 of the student text.

Sometimes it is helpful to define specific conditions on a method. This technique is a way to formally specify the status of a program before and after a method is executed. A pre-condition represents the status of a program before the method is executed, and a post-condition represents the status of a program after the method finishes execution. Often these conditions refer to the values of variables before and after the method is executed. Conditions are a way to document the role that the method plays in a program. They are often specified in the header block of documentation for the method.

For example, in the Account class, the method addInterest might have the following conditions:

Pre-Condition: Interest has not been added to the account.

Post-Condition: Calculated interest has been added to the balance of the account.

Note that, in one sense, this approach is simply a more formal way of stating the purpose of the method.

A variation on a pre-condition is an assertion. As of Java 1.4, assertions are a formal part of the language. An assertion is a condition expressed in coding terms – specifically as a Boolean expression. If the assertion does not hold at the time it is evaluated, an AssertionError is thrown. A Java assertion takes the following form:

assert expression;

where the expression is a Boolean expression such as (count > 0). If count is not greater than 0 when the assertion statement is evaluated, an error is thrown.

Assertions are a way to establish a condition that is being assumed at a particular point in a program. The idea is that if the assertion does not hold, something fairly drastic has gone wrong with the processing.

Note that, for backwards compatibility with earlier versions of Java (before assert was added as a new reserved word of the language), using assertions requires a special command-line option be used when the program is compiled.

Inserting and Deleting Array Elements

The following section could be referenced above the section entitled "Arrays of Objects" on

page 308 of the student edition.

When using an array to store a list of elements, inserting a new element into the middle of the list should not replace an existing one, but rather be "squeezed" in between two existing elements. Likewise, deleting an element should not leave a "hole" – the gap created by the deleted element should be closed up. Array indexes must be carefully taken into account when an element is inserted into or deleted from an array.

Therefore, an insertion into the middle of an array can only be accomplished by creating an empty cell in the array at the appropriate point. All higher indexed elements must be shifted up one position. This shifting does not occur automatically – it must be accomplished by the program managing the array.

For example, the following code inserts the value newValue at index insertPoint in an array called numbers:

for (int index=last; index >= insertPoint; index--)

numbers[index+1] = numbers[index];

numbers[insertPoint] = newValue;

The for loop shifts the high index values out of the way, creating an available cell into which the new element is inserted. The value of index begins at last, which is the highest index in the array at which a list element is stored.

Suppose, for instance, that the array numbers is declared to hold 100 elements, indexed from 0 to 99, and that currently 70 values are stored in indexes 0 to 69. Therefore, the value of last is 69. Now suppose that we determine we need to insert a value after the value at index 40, which is the insertPoint. The loop first copies the value at index 69 to index 70, then the value at index 68 to index 69, then the value at index 67 to index 68, and so on until finally the value at index 40 is copied into index 41. Then the new value is stored in the array at index 40.

Note that, on an insertion, the array must have a cell at the end that is not currently being used. Otherwise, an error may occur because we referenced an index that is out of bounds. Also, note that the shifting of the elements must occur from the higher indexes down so that valid list elements are not overwritten.

Likewise, when an element is deleted, the elements at higher indexes must be shifted down close up the gap created by the deleted element. For example, the following code deletes the value at index deletePoint:

for (int index=deletePoint; index <= last; index++)

numbers[index] = numbers[index+1];

numbers[last] = 0;

last = last-1;

The deletion occurs by overwriting the deleted value with the value at the next highest index, then overwriting that value with the next one, and so on. The process of deletion creates a new "empty" cell at the end of the list of elements. The act of shifting the values leaves an old value in that cell. Therefore it is usually a good practice to specifically overwrite the value in that cell with a value that represents an empty cell (zero in the example). Then the value representing the index of the last element in the list is decremented.

Note that, unlike an insertion, the process of deletion does not risk accessing an index value that is out of the array bounds.

The following activity may help illustrate this concept.

Activity

The class IntegerList, shown below, represents a list of integers stored in an array. It has the following methods:

· IntegerList(int size)—Creates a new list of size elements. Elements are initialized to 0.

· void randomize()—Fills the list with random integers between 1 and 100, inclusive.

· void print()—Prints the array elements and indices

The class IntegerListTest, shown below, contains a Java program that provides menu-driven testing of the IntegerList class. Copy both files to your directory, and compile and run IntegerListTest to see how it works. For example, create a list and then print it.

Now add to the IntegerList class the capability to insert and delete elements from the array, and modify the IntegerListTest class to test these new features. You will need to implement the following methods in the IntegerList class:

· void increaseSize()—Doubles the size of the array by creating a larger array and copying in the values from the original array. New elements are initialized to 0.

· void addElement(int newVal, int index)—Adds the element newVal to the array at index index. Array elements are shifted as necessary to make room for the new element. If the array is full, call increaseSize first.

· void removeElement(int val)—Removes the first occurrence of the element val from the array. Array elements are shifted as necessary to close the hole. If the element does not appear in the list, do nothing.

IntegerList.java

// **

// IntegerList.java

//

// Define an IntegerList class with methods to create, fill,

// and print a list of integers.

//

// **

public class IntegerList{

 private int[] list; //values in the list

 //---

 //create a list of the given size

 //---

 public IntegerList(int size)

 {

 list = new int[size];

 }

 //---

 //fill array with integers between 1 and 100, inclusive

 //---

 public void randomize()

 {

 for (int i=0; i<list.length; i++)

 list[i] = (int)(Math.random() * 100) + 1;

 }

 //---

 //print array elements with indices

 //---

 public void print()

 {

 for (int i=0; i<list.length; i++)

 System.out.println(i + ":\t" + list[i]);

 }

}

IntegerListTest.java

// **

// IntegerListTest.java

//

// Provide a menu-driven tester for the IntegerList class.

//

// **

import cs1.Keyboard;

public class IntegerListTest{

 static IntegerList list = new IntegerList(10);

 //---

 // Create a list, then repeatedly print the menu and do what the

 // user asks until they quit

 //---

 public static void main(String[] args)

 {

 printMenu();

 int choice = Keyboard.readInt();

 while (choice != 0)

 {

 dispatch(choice);

 printMenu();

 choice = Keyboard.readInt();

 }

 }

 //---

 // Do what the menu item calls for

 //---

 public static void dispatch(int choice)

 {

 int loc;

 switch(choice)

 {

 case 0:

 System.out.println("Bye!");

 break;

 case 1:

 System.out.println("How big should the list be?");

 int size = Keyboard.readInt();

 list = new IntegerList(size);

 list.randomize();

 break;

 case 2:

 list.print();

 break;

 default:

 System.out.println("Sorry, invalid choice");

 }

 }

 //---

 // Print the user's choices

 //---

 public static void printMenu()

 {

 System.out.println("\n Menu ");

 System.out.println(" ====");

 System.out.println("0: Quit");

 System.out.print("1: Create a new list ");

 System.out.println("(** do this first!! **)");

 System.out.println("2: Print the list");

 System.out.print("\nEnter your choice: ");

 }

}
Invariants

The following section could be referenced above the section entitled "Representing Data Structures" on page 515 of the student text.

An invariant is a rule that we establish about a particular collection. For example, we may establish as an invariant that a certain list will be maintained in a sorted order based on a particular key value.

As the name implies, an invariant cannot be violated. That is, any processing on a data structure must always keep the rule established by the invariant valid.

Sometimes invariants are established formally through the programming language (such as a Java assertion). In other cases they are established in the documentation without any executable guarantee that the invariant holds. Yet another way to handle these situations is to document the rule and use only appropriate processing, without using the term invariant at all.

Linked Lists (singly, doubly, and circular)

The following paragraphs could be referenced after the paragraph that begins "You could also combine…" on page 525 of the student text (making them the last paragraphs of the "Other Dynamic List Representations" section).

Yet another variation on dynamic list representations is the concept of a circular list. Unlike doubly linked lists, or lists with header nodes, a circular list doesn't require any structure other than the traditional linked representation already discussed. What's different about a circular list is how the links are managed. In particular, instead of the last next link in the list being a null reference, it instead points back to the first node in the list. Therefore, the links form a circle rather than pure linear structure.

Why would we every want to do this? Well, our goal for any particular program is to solve a problem. Some problems lend themselves to processing data in a circular manner, continually cycling through the data. The key in some cases is to be able to realize that you've returned to the fist element in the list.

Although a circular list does not require additional structure, we can maintain combine these concepts creating a doubly circular linked list, with or without using a header node. As always, the complexity of the structure should be a function of the program needs.

Inserting, Deleting, and Traversing Maps and Sets

The following could be referenced above the section entitled "Trees" on page 545 of the student text.
As shown in Figure 10.1, inserting an element into a set is accomplished using the add method and deleting an element from a set is accomplished using the remove method. Traversing a set is accomplished using the iterator method.

For example, the following code inserts a new Person object into a set called group:

if (group.add(new Person("Fred")))

System.out.println ("New person added successfully.");

else

System.out.println ("Person already exists in group.");

Since group is a set, duplicates are not allowed, and the add method returns a boolean result indicating whether the new element was successfully added to the set.

The remove method also returns a boolean result:

if (group.remove(eliminate))

System.out.println ("Person eliminated.");

else

System.out.println ("No such person exists in group.");

If there is a Person object in the group that is equal to the eliminate object, it is removed from the set and the method returns true. Otherwise, it returns false.

Traversing the elements of a set is accomplished using an iterator, similar to how we used them with the ArrayList class (see pages 337-341). For example:

scan = group.iterator();

while (scan.hasNext())

System.out.println (scan.next());

For maps, insertions, deletions and traversals are a bit different, as shown in Figure 10.2. Since each value in a map has an associated key, all references to the map elements are accomplished using the key values. Suppose we have a map called library that stores Book objects using unique key identifiers (such as a Dewey Decimal number). To insert a new book into the library, we use the put method:

library.put (id, newBook);

To delete a book, we use the remove method, passing only the book's id:

libraray.remove (id);

To traverse all books stored in the library, we use a set of key values, obtained using the keySet method, then iterate over the keys, repetitively call the get method to retrieve particular books:

Set keys = library.keySet();

Iterator scan = keys.iterator();

while (scan.hasNext())

{

nextId = scan.next();

System.out.println (library.get(nextId));

}

LP 32

